Publications

Critical percolation: the expected number of clusters in a rectangle (Clément Hongler, Stanislav Smirnov), Prob. Th. and Rel. Fields, November 2011.
Connection probabilities and RSW-type bounds for the FK Ising model (Hugo Duminil-Copin, Clément Hongler, Pierre Nolin), Comm. Pure and Appl. Math., September 2011.
Conformal invariance of Ising model correlations (Clément Hongler), Ph.D. thesis, Université de Genève, July 2010.
Hardy Spaces and Boundary Conditions from the Ising Model (Clément Hongler, Duong H. Phong), Math. Zeit., June 2013.
The energy density in the planar Ising model (Clément Hongler, Stanislav Smirnov), Acta Math., December 2013.
Ising interfaces and free boundary conditions (Clément Hongler, Kalle Kytölä), J. of the Amer. Math. Soc., October 2013.
Conformal Invariance of Ising Model Correlations (Clément Hongler), ICMP 2012 proceedings, World Scientific, October 2013.
Convergence of Ising interfaces to Schramm’s SLE curves (Dmitry Chelkak, Hugo Duminil-Copin, Clément Hongler, Antti Kemppainen, Stanislav Smirnov), C. R. Acad. Sci. Paris, January 2014.
Conformal Invariance of Spin Correlations in the Planar Ising Model (Dmitry Chelkak, Clément Hongler, Konstantin Izyurov), Annals of Math., May 2015.
Discrete holomorphicity and Ising model operator formalism (Kalle  Kytölä, Clément Hongler, Ali Zahabi),  Contemporary Mathematics Series of the AMS, 2015.
Crossing probabilities in topological rectangles for the critical planar FK-Ising model (Dmitry Chelkak, Hugo  Duminil-Copin, Clément Hongler), Elec. J. of Prob., January 2016.
Conformal invariance of crossing probabilities for the Ising model with free boundary conditions (Stéphane Benoist, Hugo Duminil-Copin, Clément Hongler), Ann. of IHP, October 2016.
Conformal Field Theory at the Lattice Level: Discrete Complex Analysis and Virasoro Structure (Clément Hongler, Fredrik Johansson Viklund and Kalle Kytölä), [arXiv:1307.4104v2].
Ising model: Local spin correlations and conformal invariance (Reza Gheissari, Clément Hongler, Sungchul Park), Comm. Math. Phys., February 2019.
The scaling limit of critical Ising interfaces is CLE(3) (Stéphane Benoist, Clément Hongler), [arXiv:1604.06975v2], to appear in Annals of Prob.
Neural Tangent Kernel: Convergence and Generalization in Neural Networks (Arthur Jacot, Franck Gabriel, Clément Hongler), [arXiv:1806.07572]. NeurIPS 2018 (Spotlight TalkPoster).
Scaling description of generalization with number of parameters in deep learning (Mario Geiger, Arthur Jacot, Stefano Spigler, Franck Gabriel, Levent Sagun, Stéphane d’Ascoli, Giulio Biroli, Clément Hongler, Matthieu Wyart), [arXiv:1901.01608].